LifePort hypothermic machine perfusion data analysis

Showcase with code

Author

Simon Schwab

Published

March 26, 2025

Abstract
This report demonstrates how to import LifePort hypothermic machine perfusion data for research and data analysis in R.

Objectives

This showcase imports 50 LifePort raw data sets and performs descriptive statistics. This report was created using R, RStudio, Quarto, and the Swisstransplant package (swt). I hope this work will advance research and analysis of perfusion data.

Data import

Code
library(fs)
library(swt)
library(ggplot2)
library(gridExtra)

col = swt::swt_colors()

If these packages are not already installed, you can install them using:

install.packages("foo")

The Swisstransplant package (swt) can be installed from GitHub using the remotes package:

remotes::install_github("Swisstransplant/swt")

Below, I define the path where the data is located in the variable PATH_DATA.

Code
PATH_DATA = file.path(path_home(), "OneDrive - Swisstransplant", 
                      "Data", "Lifeport Rawdata", "2024")
files = list.files(PATH_DATA, pattern = ".txt|.TXT")
files = files[1:50] # only use 50 cases

Raw data files

I read each data file, one by one, from the first to the total number of files length(files), using a for loop. The LifePort data are processed in three steps:

  1. Read the data file with lifeport_read()
  2. Process the data (e.g., signal filtering) with lifeport_process()
  3. Calculate the statistical indicators with lifeport_sumstats()

For more details, refer to the publication at the end.

Reading hundreds of files will inevitably lead to errors, especially if a LifePort data file is corrupt or empty. To handle this, the problematic file must be identified and removed from the data folder. Debugging can be done by adding a print(i) statement in the loop to determine which file (files[i]) caused the issue.

Code
data.device = list()
data.organ = list()
data.timeseries = list()
data.sumstats = list()

for (i in 1:length(files)) {
  
  # print(i) # for debugging
  
  tmp = lifeport_read(file = file.path(PATH_DATA, files[i]), format = "guess")
  tmp = lifeport_process(lpdat = tmp, window_size = 15)
  tmp = lifeport_sumstats(lpdat = tmp, ice_threshold = 2.5)
  
  # add filename as well
  tmp$data.device$Filename = files[i]
  
  data.device[[i]]     = tmp$data.device
  data.organ[[i]]      = tmp$data.organ
  data.timeseries[[i]] = tmp$data
  data.sumstats[[i]]   = tmp$data.sumstats
}

data.device = data.table::rbindlist(data.device)
data.organ = data.table::rbindlist(data.organ)
data.sumstats = data.table::rbindlist(data.sumstats)

The code above is designed to collect all the data and store it temporarily in different lists. Once all the data has been read and processed, the lists can be transformed into data frames.

Data access in R

Device data

The device data contains the serial number, the name of the device, the start, stop, and run time.

Code
n = 5

data.device[1:n, -c("Filename", "Type", "SubType", "DataState", "HasGaps")]
SerialNumber UnitID FirmwareVersion FileID StartTime Runtime StopTime
2326506 768 7 2024-01-02 00:59:26 06:11:10 2024-01-02 07:10:26
1415442 DIEGEM_LOANER 515 10 2024-01-03 14:33:46 03:52:00 2024-01-03 18:25:36
1423194 GDfL 515 97 2024-01-03 14:23:42 02:29:40 2024-01-03 16:53:12
1415442 DIEGEM_LOANER 515 11 2024-01-08 14:23:37 03:16:10 2024-01-08 17:39:37
1423110 SG1 515 48 2024-01-21 14:01:46 03:58:20 2024-01-21 17:59:56
Note

Ideally, the UnitID should be a short name without special characters. I believe the LifePort machines in Geneva have a special character in their UnitID. In such cases, the UnitID may not display correctly, and if it contains a name that could cause serious issues, it will be removed.

Organ data

Organ data includes the kidney side, blood type, and cross-clamp time. This information is entered into the device by healthcare professionals and may be missing if not entered.

Code
data.organ[1:n, c("KidneySide", "BloodType", "CrossClampTime.Date")]
KidneySide BloodType CrossClampTime.Date
Right 0 2024-01-01 23:51:00
Left 0 2024-03-01 12:32:00
Right 0 2024-01-03 12:32:00
Right 0 NA
Left A NA

Summary statistics data

The summary statistics data are particularly interesting as they include various values such as mean ice temperature, mean discharge, and more. See the publication at the end for more details.

Code
n = 10

data.sumstats[1:n, ]
perfusion.dur perfusion.dur.str systolicPressure.md diastolicPressure.mean flowRate.mean organResistance.mean organResistance.sd organResistance.x1 organResistance.y1 organResistance.x2 organResistance.y2 organResistance.delta organResistance.slope iceContainerTemperature.mean iceContainerTemperature.sd iceContainerTemperature.minAbove iceContainerTemperature.minAbove.str infuseTemperature.mean infuseTemperature.sd infuseTemperature.start infuseTemperature.minAbove infuseTemperature.minAbove.str
368.83333 06:08:50 28.33333 19.67842 151.66601 0.1499605 0.0106282 8.00000 0.3328040 96.42424 0.2153304 -0.1174736 -0.0080094 2.354513 0.0728145 0.00000 00:00:00 6.778806 1.2528984 10.236667 7.1666667 00:07:10
35.66667 00:35:40 24.66667 21.93645 123.50081 0.1453492 0.0491878 NA NA NA NA NA NA 1.873707 0.1100868 0.00000 00:00:00 6.424103 0.1477794 6.413333 0.0000000 00:00:00
142.16667 02:22:10 29.46667 21.78759 49.16569 0.5064565 0.0560590 8.00000 0.7881980 35.18270 0.6431914 -0.1450066 -0.0322236 1.313920 0.0794070 0.00000 00:00:00 6.253837 0.4731581 6.423333 0.0000000 00:00:00
193.83333 03:13:50 29.46667 20.69923 143.20896 0.1635259 0.0125971 8.00000 0.2880239 66.88864 0.1913324 -0.0966915 -0.0100026 2.342481 0.1482780 17.33333 00:17:20 6.552988 0.1423970 6.783333 0.0000000 00:00:00
189.33333 03:09:20 29.46667 20.68374 126.49927 0.1829073 0.0188346 8.00000 0.3763685 37.31903 0.2488760 -0.1274925 -0.0263778 1.908881 0.1506162 0.00000 00:00:00 5.136852 0.6166316 5.486667 0.0000000 00:00:00
475.33333 07:55:20 29.53333 16.02805 78.10237 0.2776885 0.0218842 60.00002 0.5077676 105.81427 0.3577929 -0.1499747 -0.0199968 1.995274 0.3623524 31.83333 00:31:50 4.955487 0.8323820 7.333333 0.1666667 00:00:10
26.66667 00:26:40 13.40000 10.02441 NA NA NA NA NA NA NA NA NA 1.657855 0.1108550 0.00000 00:00:00 8.026923 0.3899790 8.250000 0.0000000 00:00:00
336.33333 05:36:20 29.60000 16.03300 74.53828 0.2960289 0.0178520 8.00000 0.9659789 26.47657 0.5348632 -0.4311158 -0.1437060 1.656053 0.1851524 0.00000 00:00:00 6.060091 0.4616435 8.016667 0.0000000 00:00:00
103.16667 01:43:10 22.60000 19.86160 165.24365 0.1234410 0.0288686 32.66376 0.1663610 237.97514 0.1105713 -0.0557897 -0.0015989 2.139178 0.1180563 0.00000 00:00:00 7.204429 0.7044574 8.476667 0.0000000 00:00:00
262.00000 04:22:00 29.46667 19.01612 49.97994 0.4795192 0.0423279 8.00000 1.1968849 55.91632 0.7775040 -0.4193810 -0.0535380 1.519420 0.0863631 0.00000 00:00:00 6.450427 0.8935817 9.143333 0.0000000 00:00:00

Time series data

The complete time series data is also available. Below is an example for the first kidney, the first 10 samples, along with the filtered (smoothed) time series. Due to filtering, the first few and the last few values are missing.

Code
data.timeseries[[1]][1:10, c("FlowRate", "FlowRate.flt")]
FlowRate FlowRate.flt
14 NA
10 NA
30 NA
52 NA
63 NA
67 NA
71 NA
75 61.86667
75 66.53333
77 71.40000

Descriptive statistics

Here are some examples of how to visualize the data and perform some statistics.

Plotting the data

Code
k = 4 # which time series to show
t = 1:1000 # show first 100 seconds

p1 = ggplot(data.sumstats, aes(x = iceContainerTemperature.mean)) + 
  geom_histogram(bins = 10, alpha = 1, fill = col$blue.alt) +
  xlab("Mean ice temperatue") +
  labs(tag = "A") + swt_style()

p2 = ggplot(data.sumstats, aes(x = flowRate.mean, y = organResistance.mean)) + 
  geom_point(size = 2, alpha = 0.5, col = col$strongred.akzent) +
  scale_color_manual(values = col$blue.swt) +
  xlab("Mean flow rate") + ylab("Mean organ resistance") +
  labs(tag = "B") + swt_style()

p3 = ggplot(data.timeseries[[k]][t,], aes(x = time.clock, y = FlowRate)) + 
  geom_line(size = 1, alpha = 1, col = col$turkis.tpx) +
  ylim(c(0, 200)) +
  xlab("Clock Time") + ylab("Flow rate (raw)") + 
  labs(tag = "C") + swt_style()

p4 = ggplot(data.timeseries[[k]][t,], aes(x = time.zero, y = FlowRate.flt)) + 
  geom_line(size = 1, alpha = 1, col = col$purple.alt) +
  ylim(c(0, 200)) +
  xlab("Time (starting from 0)") + ylab("Flow rate (filtered)") +
  labs(tag = "D") + swt_style()

grid.arrange(p1, p2, p3, p4, nrow = 2, ncol = 2)

Mean (IQR) of the perfusion duration

Flow rate was converted to the unit hours.

Code
data.frame(median = median_iqr(data.sumstats$perfusion.dur/60))
median
5.8 (from 3.4 to 8.4)

Mean (IQR) of flow rate

To clarify, each kidney has a mean flow rate, and I calculate the median across all the mean flow rates.

Code
data.frame(median = median_iqr(data.sumstats$flowRate.mean))
median
104.5 (from 68.4 to 133.0)

References

Please be sure to cite the following work in your research when utilizing EXAM or the Swisstranplant swt package for machine perfusion data analysis.

Schwab S, Steck H, Binet I, Elmer A, Ender W, Franscini N, Haidar F, Kuhn C, Sidler D, Storni F, Krügel N, Immer F. EXAM: Ex-vivo allograft monitoring dashboard for the analysis of hypothermic machine perfusion data in deceased-donor kidney transplantation. PLOS Digit Health. 2024;3(12):e0000691. doi:10.1371/journal.pdig.0000691

Schwab S. EXAM: Ex Vivo Allograft Monitoring Dashboard. Github; 2025. Accessed February 13, 2025. https://github.com/Swisstransplant/EXAM

Schwab S. swt: Swisstransplant R Package. Github; 2024. Accessed February 13, 2025. https://github.com/Swisstransplant/swt

Contact

Please feel free to contact me at with any inquiries regarding the analysis of perfusion data; I’m happy to assist.

Computing information

Code
sessionInfo()
R version 4.4.3 (2025-02-28 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19045)

Matrix products: default


locale:
[1] LC_COLLATE=English_Switzerland.utf8  LC_CTYPE=English_Switzerland.utf8   
[3] LC_MONETARY=English_Switzerland.utf8 LC_NUMERIC=C                        
[5] LC_TIME=English_Switzerland.utf8    

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] gridExtra_2.3 ggplot2_3.5.1 swt_0.3       fs_1.6.5     

loaded via a namespace (and not attached):
 [1] gtable_0.3.6      jsonlite_1.9.1    dplyr_1.1.4       compiler_4.4.3   
 [5] tidyselect_1.2.1  splines_4.4.3     scales_1.3.0      yaml_2.3.10      
 [9] fastmap_1.2.0     lattice_0.22-6    R6_2.6.1          labeling_0.4.3   
[13] generics_0.1.3    knitr_1.50        htmlwidgets_1.6.4 MASS_7.3-65      
[17] tibble_3.2.1      munsell_0.5.1     lubridate_1.9.4   pillar_1.10.1    
[21] rlang_1.1.5       xfun_0.51         segmented_2.1-4   timechange_0.3.0 
[25] cli_3.6.4         withr_3.0.2       magrittr_2.0.3    digest_0.6.37    
[29] grid_4.4.3        hms_1.1.3         lifecycle_1.0.4   nlme_3.1-167     
[33] vctrs_0.6.5       evaluate_1.0.3    glue_1.8.0        data.table_1.17.0
[37] farver_2.1.2      colorspace_2.1-1  rmarkdown_2.29    tools_4.4.3      
[41] pkgconfig_2.0.3   htmltools_0.5.8.1