Code
library(fs)
library(swt)
library(ggplot2)
library(gridExtra)
= swt::swt_colors() col
Showcase with code
This showcase imports 50 LifePort raw data sets and performs descriptive statistics. This report was created using R, RStudio, Quarto, and the Swisstransplant package (swt
). I hope this work will advance research and analysis of perfusion data.
library(fs)
library(swt)
library(ggplot2)
library(gridExtra)
= swt::swt_colors() col
If these packages are not already installed, you can install them using:
install.packages("foo")
The Swisstransplant package (swt
) can be installed from GitHub using the remotes
package:
::install_github("Swisstransplant/swt") remotes
Below, I define the path where the data is located in the variable PATH_DATA
.
= file.path(path_home(), "OneDrive - Swisstransplant",
PATH_DATA "Data", "Lifeport Rawdata", "2024")
= list.files(PATH_DATA, pattern = ".txt|.TXT")
files = files[1:50] # only use 50 cases files
I read each data file, one by one, from the first to the total number of files length(files)
, using a for loop. The LifePort data are processed in three steps:
lifeport_read()
lifeport_process()
lifeport_sumstats()
For more details, refer to the publication at the end.
Reading hundreds of files will inevitably lead to errors, especially if a LifePort data file is corrupt or empty. To handle this, the problematic file must be identified and removed from the data folder. Debugging can be done by adding a print(i)
statement in the loop to determine which file (files[i]
) caused the issue.
= list()
data.device = list()
data.organ = list()
data.timeseries = list()
data.sumstats
for (i in 1:length(files)) {
# print(i) # for debugging
= lifeport_read(file = file.path(PATH_DATA, files[i]), format = "guess")
tmp = lifeport_process(lpdat = tmp, window_size = 15)
tmp = lifeport_sumstats(lpdat = tmp, ice_threshold = 2.5)
tmp
# add filename as well
$data.device$Filename = files[i]
tmp
= tmp$data.device
data.device[[i]] = tmp$data.organ
data.organ[[i]] = tmp$data
data.timeseries[[i]] = tmp$data.sumstats
data.sumstats[[i]]
}
= data.table::rbindlist(data.device)
data.device = data.table::rbindlist(data.organ)
data.organ = data.table::rbindlist(data.sumstats) data.sumstats
The code above is designed to collect all the data and store it temporarily in different lists. Once all the data has been read and processed, the lists can be transformed into data frames.
The device data contains the serial number, the name of the device, the start, stop, and run time.
= 5
n
1:n, -c("Filename", "Type", "SubType", "DataState", "HasGaps")] data.device[
SerialNumber | UnitID | FirmwareVersion | FileID | StartTime | Runtime | StopTime |
---|---|---|---|---|---|---|
2326506 | 768 | 7 | 2024-01-02 00:59:26 | 06:11:10 | 2024-01-02 07:10:26 | |
1415442 | DIEGEM_LOANER | 515 | 10 | 2024-01-03 14:33:46 | 03:52:00 | 2024-01-03 18:25:36 |
1423194 | GDfL | 515 | 97 | 2024-01-03 14:23:42 | 02:29:40 | 2024-01-03 16:53:12 |
1415442 | DIEGEM_LOANER | 515 | 11 | 2024-01-08 14:23:37 | 03:16:10 | 2024-01-08 17:39:37 |
1423110 | SG1 | 515 | 48 | 2024-01-21 14:01:46 | 03:58:20 | 2024-01-21 17:59:56 |
Ideally, the UnitID
should be a short name without special characters. I believe the LifePort machines in Geneva have a special character in their UnitID
. In such cases, the UnitID
may not display correctly, and if it contains a name that could cause serious issues, it will be removed.
Organ data includes the kidney side, blood type, and cross-clamp time. This information is entered into the device by healthcare professionals and may be missing if not entered.
1:n, c("KidneySide", "BloodType", "CrossClampTime.Date")] data.organ[
KidneySide | BloodType | CrossClampTime.Date |
---|---|---|
Right | 0 | 2024-01-01 23:51:00 |
Left | 0 | 2024-03-01 12:32:00 |
Right | 0 | 2024-01-03 12:32:00 |
Right | 0 | NA |
Left | A | NA |
The summary statistics data are particularly interesting as they include various values such as mean ice temperature, mean discharge, and more. See the publication at the end for more details.
= 10
n
1:n, ] data.sumstats[
perfusion.dur | perfusion.dur.str | systolicPressure.md | diastolicPressure.mean | flowRate.mean | organResistance.mean | organResistance.sd | organResistance.x1 | organResistance.y1 | organResistance.x2 | organResistance.y2 | organResistance.delta | organResistance.slope | iceContainerTemperature.mean | iceContainerTemperature.sd | iceContainerTemperature.minAbove | iceContainerTemperature.minAbove.str | infuseTemperature.mean | infuseTemperature.sd | infuseTemperature.start | infuseTemperature.minAbove | infuseTemperature.minAbove.str |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
368.83333 | 06:08:50 | 28.33333 | 19.67842 | 151.66601 | 0.1499605 | 0.0106282 | 8.00000 | 0.3328040 | 96.42424 | 0.2153304 | -0.1174736 | -0.0080094 | 2.354513 | 0.0728145 | 0.00000 | 00:00:00 | 6.778806 | 1.2528984 | 10.236667 | 7.1666667 | 00:07:10 |
35.66667 | 00:35:40 | 24.66667 | 21.93645 | 123.50081 | 0.1453492 | 0.0491878 | NA | NA | NA | NA | NA | NA | 1.873707 | 0.1100868 | 0.00000 | 00:00:00 | 6.424103 | 0.1477794 | 6.413333 | 0.0000000 | 00:00:00 |
142.16667 | 02:22:10 | 29.46667 | 21.78759 | 49.16569 | 0.5064565 | 0.0560590 | 8.00000 | 0.7881980 | 35.18270 | 0.6431914 | -0.1450066 | -0.0322236 | 1.313920 | 0.0794070 | 0.00000 | 00:00:00 | 6.253837 | 0.4731581 | 6.423333 | 0.0000000 | 00:00:00 |
193.83333 | 03:13:50 | 29.46667 | 20.69923 | 143.20896 | 0.1635259 | 0.0125971 | 8.00000 | 0.2880239 | 66.88864 | 0.1913324 | -0.0966915 | -0.0100026 | 2.342481 | 0.1482780 | 17.33333 | 00:17:20 | 6.552988 | 0.1423970 | 6.783333 | 0.0000000 | 00:00:00 |
189.33333 | 03:09:20 | 29.46667 | 20.68374 | 126.49927 | 0.1829073 | 0.0188346 | 8.00000 | 0.3763685 | 37.31903 | 0.2488760 | -0.1274925 | -0.0263778 | 1.908881 | 0.1506162 | 0.00000 | 00:00:00 | 5.136852 | 0.6166316 | 5.486667 | 0.0000000 | 00:00:00 |
475.33333 | 07:55:20 | 29.53333 | 16.02805 | 78.10237 | 0.2776885 | 0.0218842 | 60.00002 | 0.5077676 | 105.81427 | 0.3577929 | -0.1499747 | -0.0199968 | 1.995274 | 0.3623524 | 31.83333 | 00:31:50 | 4.955487 | 0.8323820 | 7.333333 | 0.1666667 | 00:00:10 |
26.66667 | 00:26:40 | 13.40000 | 10.02441 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1.657855 | 0.1108550 | 0.00000 | 00:00:00 | 8.026923 | 0.3899790 | 8.250000 | 0.0000000 | 00:00:00 |
336.33333 | 05:36:20 | 29.60000 | 16.03300 | 74.53828 | 0.2960289 | 0.0178520 | 8.00000 | 0.9659789 | 26.47657 | 0.5348632 | -0.4311158 | -0.1437060 | 1.656053 | 0.1851524 | 0.00000 | 00:00:00 | 6.060091 | 0.4616435 | 8.016667 | 0.0000000 | 00:00:00 |
103.16667 | 01:43:10 | 22.60000 | 19.86160 | 165.24365 | 0.1234410 | 0.0288686 | 32.66376 | 0.1663610 | 237.97514 | 0.1105713 | -0.0557897 | -0.0015989 | 2.139178 | 0.1180563 | 0.00000 | 00:00:00 | 7.204429 | 0.7044574 | 8.476667 | 0.0000000 | 00:00:00 |
262.00000 | 04:22:00 | 29.46667 | 19.01612 | 49.97994 | 0.4795192 | 0.0423279 | 8.00000 | 1.1968849 | 55.91632 | 0.7775040 | -0.4193810 | -0.0535380 | 1.519420 | 0.0863631 | 0.00000 | 00:00:00 | 6.450427 | 0.8935817 | 9.143333 | 0.0000000 | 00:00:00 |
The complete time series data is also available. Below is an example for the first kidney, the first 10 samples, along with the filtered (smoothed) time series. Due to filtering, the first few and the last few values are missing.
1]][1:10, c("FlowRate", "FlowRate.flt")] data.timeseries[[
FlowRate | FlowRate.flt |
---|---|
14 | NA |
10 | NA |
30 | NA |
52 | NA |
63 | NA |
67 | NA |
71 | NA |
75 | 61.86667 |
75 | 66.53333 |
77 | 71.40000 |
Here are some examples of how to visualize the data and perform some statistics.
= 4 # which time series to show
k = 1:1000 # show first 100 seconds
t
= ggplot(data.sumstats, aes(x = iceContainerTemperature.mean)) +
p1 geom_histogram(bins = 10, alpha = 1, fill = col$blue.alt) +
xlab("Mean ice temperatue") +
labs(tag = "A") + swt_style()
= ggplot(data.sumstats, aes(x = flowRate.mean, y = organResistance.mean)) +
p2 geom_point(size = 2, alpha = 0.5, col = col$strongred.akzent) +
scale_color_manual(values = col$blue.swt) +
xlab("Mean flow rate") + ylab("Mean organ resistance") +
labs(tag = "B") + swt_style()
= ggplot(data.timeseries[[k]][t,], aes(x = time.clock, y = FlowRate)) +
p3 geom_line(size = 1, alpha = 1, col = col$turkis.tpx) +
ylim(c(0, 200)) +
xlab("Clock Time") + ylab("Flow rate (raw)") +
labs(tag = "C") + swt_style()
= ggplot(data.timeseries[[k]][t,], aes(x = time.zero, y = FlowRate.flt)) +
p4 geom_line(size = 1, alpha = 1, col = col$purple.alt) +
ylim(c(0, 200)) +
xlab("Time (starting from 0)") + ylab("Flow rate (filtered)") +
labs(tag = "D") + swt_style()
grid.arrange(p1, p2, p3, p4, nrow = 2, ncol = 2)
Flow rate was converted to the unit hours.
data.frame(median = median_iqr(data.sumstats$perfusion.dur/60))
median |
---|
5.8 (from 3.4 to 8.4) |
To clarify, each kidney has a mean flow rate, and I calculate the median across all the mean flow rates.
data.frame(median = median_iqr(data.sumstats$flowRate.mean))
median |
---|
104.5 (from 68.4 to 133.0) |
Please be sure to cite the following work in your research when utilizing EXAM or the Swisstranplant swt
package for machine perfusion data analysis.
Schwab S, Steck H, Binet I, Elmer A, Ender W, Franscini N, Haidar F, Kuhn C, Sidler D, Storni F, Krügel N, Immer F. EXAM: Ex-vivo allograft monitoring dashboard for the analysis of hypothermic machine perfusion data in deceased-donor kidney transplantation. PLOS Digit Health. 2024;3(12):e0000691. doi:10.1371/journal.pdig.0000691
Schwab S. EXAM: Ex Vivo Allograft Monitoring Dashboard. Github; 2025. Accessed February 13, 2025. https://github.com/Swisstransplant/EXAM
Schwab S. swt: Swisstransplant R Package. Github; 2024. Accessed February 13, 2025. https://github.com/Swisstransplant/swt
Please feel free to contact me at simon.schwab@swisstransplant.org with any inquiries regarding the analysis of perfusion data; I’m happy to assist.
sessionInfo()
R version 4.4.3 (2025-02-28 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19045)
Matrix products: default
locale:
[1] LC_COLLATE=English_Switzerland.utf8 LC_CTYPE=English_Switzerland.utf8
[3] LC_MONETARY=English_Switzerland.utf8 LC_NUMERIC=C
[5] LC_TIME=English_Switzerland.utf8
time zone: Europe/Zurich
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gridExtra_2.3 ggplot2_3.5.1 swt_0.3 fs_1.6.5
loaded via a namespace (and not attached):
[1] gtable_0.3.6 jsonlite_1.9.1 dplyr_1.1.4 compiler_4.4.3
[5] tidyselect_1.2.1 splines_4.4.3 scales_1.3.0 yaml_2.3.10
[9] fastmap_1.2.0 lattice_0.22-6 R6_2.6.1 labeling_0.4.3
[13] generics_0.1.3 knitr_1.50 htmlwidgets_1.6.4 MASS_7.3-65
[17] tibble_3.2.1 munsell_0.5.1 lubridate_1.9.4 pillar_1.10.1
[21] rlang_1.1.5 xfun_0.51 segmented_2.1-4 timechange_0.3.0
[25] cli_3.6.4 withr_3.0.2 magrittr_2.0.3 digest_0.6.37
[29] grid_4.4.3 hms_1.1.3 lifecycle_1.0.4 nlme_3.1-167
[33] vctrs_0.6.5 evaluate_1.0.3 glue_1.8.0 data.table_1.17.0
[37] farver_2.1.2 colorspace_2.1-1 rmarkdown_2.29 tools_4.4.3
[41] pkgconfig_2.0.3 htmltools_0.5.8.1